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INTRODUCTION

◮ Dynamic spectrum access as a solution for spectrum shortage
◮ Mutliband spectrum sensing to identify unused frequency bands

quickly and accurately
◮ Research focuses on developing optimal sensing algorithms, not

much literature on the implementation of these algorithms
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OBJECTIVE

◮ Develop a framework that can be deployed in a grid testbed with
multiple nodes such as ORBIT testbed.

◮ Each node is equipped with universal software radio peripheral
(USRP).

◮ Develop spectrum sensing algorithms suitable for practical
implementation.

◮ Implement the algorithms and study their performance.
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SYSTEM MODEL

◮ Total number of bands M = ⌈Bw/Bwc⌉

◮ Number of sensors: L

H
(m)
0 : ynm = wnm , nm = 1, 2, . . . ,

H
(m)
1 : ynm = xnm + wnm, nm = 1, 2, . . . ,

◮ Probability of mis-detection P
(m)
MD

◮ Probability of false-alarm in any band P
(m)
FA

N1 N2 N3 NMℓ
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SENSING FRAMEWORK

◮ ORBIT measurement library (OML)=⇒ Collects sensing data

◮ Each node: USRP2/N210 and SBX daughterboard 400 − 4400MHz

◮ Use C++ along with USRP-UHD driver in each node
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MULTIBAND TIME-BASED ENERGY DETECTION

◮ A simple energy detector for each band:

1

Nm

Nm∑

nm=1

|ynm |
2

H
(m)
1

≷
H

(m)
0

γ
(m)
t

◮ Repeat for each band

◮ Fixed total number of samples at sensor ℓ:

ASNℓ =
Mℓ∑

m=1

Nm
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MULTIBAND FFT BASED SENSING
Server send
request and

initializations

fℓ, Mℓ, R, N(FFT), Bwc, γ
(m)
f

Mℓf = ⌊(R/2)/Bwc⌋, i ← 0

Compute FFT with N(fft)

points, Average by Q times

m = i + 1

Band m
is free

Pm = 2

N2
(FFT)

∑
∀km∈m

|Ykm |
2:? Band m is

occupied

m :?

i ← i + Mℓf i :?

Send Mℓ

band status
to the server

Pm < γ
(m)
f Pm > γ

(m)
f

i < Mℓ

m < Mℓf

• Sample at much higher frequency
than the channel bandwidth

• Take FFT ⇒ partition to smaller
segments

• Compute average signal power at
each band in the frequency domain
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MULTIBAND SEQUENTIAL SENSING

◮ A sequential procedure can perform better than a fixed sample size
procedure.

◮ Use a concatenation of SPRT tests accompanied by time truncation.

◮ Threshold bounds are characterized by the target SNR and error
probabilities.

nm∏
j=1

q
(m)
1 (yj)

nm∏
j=1

q
(m)
0 (yj)

H
(m)
1

> B
(m)
U , and

nm∏
j=1

q
(m)
1 (yj)

nm∏
j=1

q
(m)
0 (yj)

H
(m)
0

< B
(m)
L

nm∑

j=1

|yj|
2

H
(m)
1

> (nmαm + bm) , and
nm∑

j=1

|yj|
2

H
(m)
0

< (nmαm − cm)
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PRACTICAL CONSIDERATIONS

◮ Impose delay constraint.

◮ If SPRT is truncated⇒ use the same number of samples as energy
detector.

◮ Sample a block of samples with size λ.

• Calculate γ
(m)
t = αm + bm−cm

2Nm

• Assume P
(m)
MD = P

(m)
FA , then

bm = cm and γ
(m)
t = αm

• Compute these values by
averaging over thousand
repetitions.

Sample Number n
m

T
hr

es
ho

ld
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 C
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um
2 m

nmαm + bm

nmαm − cm Truncation

(Nm,Nmγ
(m)
t )

Channel (m) Cusum2
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MULTIBAND SEQUENTIAL SENSING
Server send
request and

initializations

fℓ, Mℓ, αm, bm, cm, Bwc,
i ← 1

nm ← 0, Cusum2m ← 0

Cusum2m ← Cusum2m +
nm+λ∑

j=nm+1
|yj|

2

Band m
is free

Cusum2m?
Band m is
occupied

nm ← nm + λ

nm?Nm

m = i + 1

m?

Send Mℓ

band status
to the server

Cusum2m ≤ (nmαm − cm) Cusum2m ≥ (nmαm + bm)

otherwise

otherwise

nm < Nm

Cusum2m < (Nmαm + (bm − cm)/2)

Truncation used

Cusum2m > (Nmαm + (bm − cm)/2)

Truncation used

m ≤Mℓ
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THRESHOLD AVERAGES

◮ Mℓ = 8, Bwc = 100KHz, fℓ = 500MHz, Nm = 2048 and λ = 8 samples

◮ Inject signals with different power levels in bands 1, 4, 6, and 7
⇒ compute Cusum2m averages

• γ
(m)
t = αm = 0.00010117 , i.e.

slope of the SPRT threshold,
Adjust offset values⇒
bm = cm = 0.08

• For FFT case,

γ
(m)
f = 0.00010375
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PERFORMANCE, ASN

◮ Mℓ = 8, Bwc = 100KHz, fℓ = 510MHz, and λ = 8 samples

◮ Use previously calculated thresholds
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PERFORMANCE, PFA

◮ Energy and SPRT sensing have similar performance with respect to
detection errors
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PERFORMANCE, PMD

◮ Mℓ = 8, Bwc = 100KHz, fℓ = 510MHz, and Q = 8.
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MULTI-NODE SENSING

◮ L = 8, Mℓ = 16, Bwc = 100KHz, and f1 = 500MHz.

◮ OML server collects sensing data⇒ repeat⇒ average

• SPRT uses less samples but
switches band frequency
more often.

• FFT based sensing covers the
entire 16 bands on each node
without switching the
frequency.
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CONCLUDING REMARKS

◮ We have developed a flexible sensing framework that can be used
for CR research and applications.

◮ We have developed, implemented and evaluated performance of
three sensing algorithms using our sensing framework.

◮ We have shown that while SPRT sensing scheme performs better in
terms of number of samples, it is not always wise to use it.

◮ Beside performance, selecting the appropriate sensing algorithm
will also depend on other factors such as: channel bandwidth, SDR
sampling rate, SDR RF switching time and the number of bands.
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Thank you.

rmcaromi@ualr.edu
www.rmcaromi.com

www.rmcaromi.com
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